Question		on	Answer	Marks	Guidance		
<u>Qu</u> 1	estic	on	Answer ΔH calculation from experiment $q = 100 \times 4.18 \times 20.5$ OR 8569 J OR 8.569 kJ Amount of butan-1-ol = $0.259 = 3.5 \times 10^{-3}$ mol 74 $\Delta H = -2448$ kJ mol ⁻¹ ΔS calculation $\Delta S = S_{products} - S_{reactants}$ $\Delta S = (4 \times 214) + (5 \times 70) - [(228) + (6 \times 205)]$ OR $\Delta S = -252$ J K ⁻¹ mol ⁻¹ OR -0.252 kJ K ⁻¹ mol ⁻¹ ΔG calculation	Marks 7	ALLOW Calculator value for $\Delta H =$ -2448.285714 correctly rounded to three or more significant figures		
			$\Delta G = \Delta H - T \Delta S$				
			$\Delta G = -2448 - (298 \times -0.252) \checkmark$		Mark for use of correct expression with ΔS in kJ K ⁻¹ mol ⁻¹		
			$\Delta G = -2373 \text{ (kJ mol}^{-1}) \checkmark$		ALLOW three or more sig figs for ΔG		
			Total	7			

Question		on	Answer	Marks	Guidance		
2	(a)		$\Delta G = \Delta H - T \Delta S$ linked to $y = mx + c$ (somewhere) \checkmark gradient = $-\Delta S \checkmark$	4	Could be: $\Delta G = -\Delta S T + \Delta H$ - sign required		
			 P: ∆H / enthalpy change ✓ Q: (temperature) for reaction to be feasible/unfeasible 		ALLOW $\Delta S = -gradient$ ALLOW 'point of feasibility'		
			OR (temperature) at which feasibility changes ✓		For Feasibility: ALLOW can take place/happen OR is spontaneous IGNORE 'minimum/maximum temperature'		
	(b)	(i)	(Species have) different states/phases ✓	1			
		(ii)	$(\mathcal{K}_{p} =) p(CO(g))^{4} \checkmark$	1	Allow species without state symbols and without brackets, e.g. p_{CO}^4 , $ppCO^4$, PCO^4 , $p(CO^4)$ etc. DO NOT ALLOW square brackets		
		(iii)	$\Delta G \text{ at } 25 \text{ C}$ $\Delta G = \Delta H - T\Delta S = 676.4 - (298 \times 0.7031)$ $= (+) 467 \text{ (kJ mol}^{-1}) \text{ OR } (+) 466876 \text{ (J mol}^{-1}) \checkmark$ Non-feasibility statement Non-feasible when $\Delta G > 0$ OR $\Delta G > 0$ OR $\Delta H > T\Delta S \checkmark$ Minimum temperature minimum temperature $= \frac{\Delta H}{\Delta S} = \frac{676.4}{0.7031}$ $= 962(.0) \text{ K } \checkmark$	3	IGNORE units ALLOW (+) 467 up to calculator value of 466.8762 correctly rounded ECF for any positive value determined in M1 ALLOW 962 up to calculator value of 962.0253165 correctly rounded		

Question	Answer	Marks	Guidance
(iv)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = –110.5, Award 3 marks.	3	For answer, ALLOW –111 (kJ mol ^{−1})
	Correct expression −13.5 = (4 × −393.5) − (−1118.5 + 4 × Δ _f H(CO)) ✓		NOTE: IF any values are omitted, DO NOT AWARD any marks. e.g. –393.5 OR –13.5 may be missing
	Correct subtraction using ΔH and $\Delta_{f}H(Fe_{3}O_{4})$ $4 \times \Delta_{f}H(CO) = (4 \times -393.5) - (-1118.5) + 13.5$		
	– –442(.0) (KJ 1101) ♥		
	Calculation of ∆ _f <i>H</i> (CO) formation		(+)110.5 wrong/omitted sign 2 marks
	$\Delta_{\rm f} H({\rm CO}) = -\frac{442}{4} = -110.5 (\rm kJ mol^{-1}) \checkmark$		(+)184.625 / 184.63 / 184.6 / 185 2 marks No 4CO ₂
			(+)738.5 / 739 No 4CO ₂ and no CO/4 1 mark
			-117.25 / -117.3 / -117 Wrong cycle 2 marks
			-469 Wrong cycle, no CO/4 1 mark
			(+)177.875 / 177.88 / 177.9 / 178 1 mark Wrong cycle, no 4CO ₂
			-360.5 Used 118.5 2 marks
			Any other number: CHECK for ECF from 1st marking point for expressions using ALL values with ONE error only e.g. one transcription error:, e.g.395.3 for 393.5
	Total	12	

Question	Answer	Marks	AO element	Guidance
3	Α	1	AO1.2	

(Question		Answer	Marks	Guidance		
4	(a)		 TAKE CARE: Correct final answer of -52.3 OR -52.25 can be obtained from two cancelling errors: Use of 50 for energy released (no ×2 of 50 for two solutions mixed) No ÷ 2 in final step -52.3 OR -52.25 would then be awarded 2 marks out of 4 	4			
			Correctly calculates n(succinic acid) = $0.400 \times \frac{50.0}{1000} = 0.02(00) \text{ (mol)} \checkmark$		ALLOW ECF throughout		
			Energy released in J OR kJ = 100.00 × 4.18 × 5.0 = 2090 (J) OR 2.090 (kJ) ✓		DO NOT ALLOW less than 3 SF IGNORE units		
			Energy released, in kJ or J, for formation of 2 mol H ₂ O				
			$\pm \frac{2090}{0.0200} = \pm 104500 \text{ (J)}$ OR		ALTERNATIVE METHOD n(succinic acid) = 0.02(00) (mol) ✓		
			$\pm \frac{2.090}{0.0200} = \pm 104.5 \text{ OR} \pm 105 \text{ (kJ)} \checkmark$		<i>Energy released</i> = 2090 (J) OR 2.090 (kJ) ✓		
			Δ_{neut} <i>H</i> to 3 or more SF AND correct – sign		$n(H_2O)$ formed = 2 × 0.02(00) = 0.04(00) (mol) \checkmark		
			$=-\frac{104.5}{2}=-52.3$ OR -52.25 kJ mol ⁻¹ \checkmark		$\Delta_{\text{neut}} \boldsymbol{H} = -\frac{2.090}{0.0400} = -52.3 \text{ OR} - 52.25 \text{ kJ mol}^{-1} \checkmark$		
-	(b)	(i)	Titration ✓	1	IGNORE type of titration		
		(ii)	$(CH_2COOH)_2 + 2C_2H_5OH \rightleftharpoons (CH_2COOC_2H_5)_2 + 2H_2O \checkmark$	1	ALLOW \rightarrow instead of \rightleftharpoons sign		
					ALLOW molecular formulae or hybrid formulae Structures provided on QP e.g. $C_4H_6O_4 + 2C_2H_6O \rightleftharpoons C_8H_{14}O_4 + 2H_2O$		

Mark Scheme						
Question	Answer	Marks	Guidance			
(iii)		1	IGNORE displayed formulae			
(iv)	Volume cancels OR Same number of moles on each side of equation ✓	1	ALLOW units cancel ALLOW (sum of) balancing numbers/coefficients on each side of equation are the same OR same number of (moles of) reactants and products IGNORE volume is the same: K ₀ has no units			
(v)	Moles of equilibrium products 1 mark $n((CH_2COOC_2H_5)_2) = 0.0300 \text{ (mol)}$ 1 AND $n(H_2O) = 0.0600 \text{ (mol)}$ $n(H_2O) = 0.0600 \text{ (mol)}$ 1 Moles of C_2H_5OH 1 mark $n(C_2H_5OH) = 0.150 - 0.060 = 0.0900 \text{ (mol)}$ 1	3				
	K_c calculated 1 mark $= \frac{0.03 \times 0.06^2}{0.02 \times 0.09^2} = 0.667$ OR $0.67 \checkmark$ NOTE: 0.02 must be used for n (succinic acid)		ALLOW ECF ALLOW 0.66, 0.666, etc. (2 SF and more) <i>Treated as meaning 0.6 recurring</i> ALLOW 2/3 IGNORE any units			
	Total	11				

Question		on	Answer	Marks	AO element	Guidance
5	(a)		s-block AND highest energy or outer electron is in a s orbital or s sub–shell ✓	1	1.1	ALLOW 'outer' or 'valence' for 'highest energy' IGNORE electron configurations DO NOT ALLOW s shell / energy level
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 25.982 award 2 marks $\frac{78.99 \times 23.985 + 10.00 \times 24.986 + 11.01 \times m}{100} = 24.305 \checkmark$ Relative isotopic mass = 25.982 (must be 5 SF) \checkmark	2	2.2 ×2	ALLOW any correct rearrangement of this sum for first mark eg 11.01 x m = 2430.5 – 1894.575 – 249.86 ALLOW ecf for transcription errors in first sum but answer must be 5 sf
	(c)	(i)	CaO + H ₂ O → Ca(OH) ₂ \checkmark	1	2.8	ALLOW multiples IGNORE state symbols ALLOW CaO + $2H_2O \rightarrow Ca(OH)_2 + H_2O$ AND CaO + $H_2O \rightarrow Ca^{2+} + 2OH^{-}$
		(ii)	both pH values > 7 AND ≤ 14 AND pH with SrO > pH with CaO ✓	1	1.2	ALLOW ranges within these values but ranges must not overlap

Question	Answer	Marks	AO element	Guidance
(d) (i)	$2K^{*}(g) + O^{2^{-}}(g) \checkmark$ $2K^{*}(g) + O(g) \checkmark$ $2K^{*}(g) + O^{-}(g) + e^{-} \checkmark$ $2K(g) + 1/_{2}O_{2}(g) \checkmark$		1.2 ×4	Mark each marking point independently Correct species AND state symbols required for each mark For e ⁻ , ALLOW e For e ⁻ only, IGNORE any state symbols added
	If answer = -2277 (kJ mol ⁻¹) award 2 marks	2	2.2 ×2	see if there is any ECF credit possible using

Question	Answer	Marks	AO element	Guidance
	-363 - (2 × +89 +249 + 2 × 419 - 141 + 790) ✓ -363 - 1914 = -2277 ✓ (kJ mol ⁻¹)			working below See list below for marking of answers from common errors ALLOW for 1 mark ONE mistake with sign OR use of 2 ×: +2277 (wrong sign) -601 (2 × -419 instead of 2 × +419) -697 (-790 instead of +790) -1551 (+363 instead of -363) -1858 (2 × +419 not used for K) -1921 (2 × -89 instead of 2 × +89) -2152.5 or -2153 (+249 ÷ 2) -2188 (2 × +89 not used for K) -2280 (rounded to 3SF) -2559 (+141 instead of -141) For other answers, check for a single transcription error or calculator error which could merit 1 mark
(e) (i)	<i>For sodium</i> atomic radius smaller	2	1.1 ×2	IGNORE smaller radius / fewer shells / less

Question	Answer	Marks	AO element	Guidance
	OR fewer shells ✓ nuclear attraction increases OR (outer) electron(s) experience more attraction ✓			shielding if applied to ions but DO NOT ALLOW responses which refer to ions losing electrons DO NOT ALLOW molecules ALLOW energy levels for shells IGNORE fewer orbitals OR fewer sub–shells ALLOW less (electron) shielding OR electron repulsion between shells IGNORE just 'shielding' ALLOW more/stronger/bigger nuclear attraction etc IGNORE 'pull' for attraction IGNORE electrons more tightly held IGNORE inuclear charge' for 'nuclear attraction' IGNORE more energy (in question) ALLOW reverse argument for potassium throughout
(ii)	<i>Comparison of size of cations</i> For sodium ions	2	1.2 ×2	comparison of IONS is essential

Question	Answer	Marks	AO element	Guidance
	ionic radius of sodium / Na ⁺ is smaller \checkmark Comparison of attraction of cation and anion Na ⁺ has stronger attraction to $O^{2-} \checkmark$		element	ALLOW Na ⁺ has a larger charge density IGNORE 'Na has smaller atomic radius' but DO NOT ALLOW contradictory sentences eg 'Na ⁺ ions have smaller atomic radius' IGNORE pull for attraction ALLOW 'sodium ion' and 'oxygen ion' IGNORE just 'oxygen' or just 'O' for oxygen ion ALLOW stronger attraction between oppositely charged ions
	Tota	ıl 15		

	Question		Answer	Marks	AO element	Guidance
6	(a)	(i)	More energy is released by forming bonds than energy required when breaking bonds OR bond enthalpy of bonds being made is higher than bond enthalpy of bonds being broken ✓	1	1.2	Response needs link between energy , breaking and making bonds Eg 'bond breaking is endothermic' AND 'bond making is exothermic' AND 'exothermic change outweighs endothermic change' IGNORE more bonds made than broken
		(ii)	FIRST CHECK ΔG If $\Delta G = -1010$ (kJ mol ⁻¹) award first 3 marks $\Delta S = (2 \times 248 + 2 \times 70) - (2 \times 206 + 3 \times 205)$ $= -391$ (J K ⁻¹ mol ⁻¹) OR -0.391 (kJ K ⁻¹ mol ⁻¹) \checkmark $\Delta G = \Delta H - T\Delta S = -1125 - (293 \times -0.391) \checkmark$ $= -1010$ (kJ mol ⁻¹) \checkmark	4	2.2 ×3	ALLOW ecf ALLOW –1010000 (J mol ⁻¹) ALLOW 3 SF up to calculator value –1010.437
			Feasible AND $\Delta G < 0$ OR ΔG is negative \checkmark		3.2 ×1	Common errors ALLOW: Two calculation marks for: -1117 to 3 SF up to calculator value of -1117.179865 (use of 20 instead of 293) (+)113438 (kJ mol ⁻¹) or 113000, 113400, 113440 (mix of J and kJ) -1008 up to calculator value of -1008.482 (use of T = 298) -1018 up to calculator value of -1018.257 (use of T = 273) ALLOW ECF for from incorrect ΔG ,
	а	(jjij)	FIRST CHECK THE ANSWER ON ANSWER LINE	3	22 - 3	eg Non feasible AND $\Delta G > 0$ OR ΔG is +ve
	4	()	If answer = -20 (kJ mol ⁻¹) award 3 marks		<i>L.L</i> ~U	

Question	Answer	Marks	AO element	Guidance
	Using Both $\triangle cH^{\theta}$ values multiplied by 2 $2 \times (-296.8)$ or -593.6 AND $2 \times (-285.8)$ or $-571.6 \ (= -1165.2)$ \checkmark Use of -1125 and correctly processed: $2\Delta_{f}H(H_{2}S) = [2 \times (-296.8) + 2 \times (-285.8)] - (-1125)$ $= -40.2 \ (kJ \ mol^{-1})$ \checkmark Division by 2 $\Delta_{f}H(H_{2}S) = -20 \ (kJ \ mol^{-1})$ \checkmark			First mark may be awarded from data on a cycle ALLOW – 20.1(0) ALLOW ECF : third mark is for dividing by 2 and use of all three values Common errors Two marks for (+)20(.1) ALLOW ecf if no multiplication by two occurred [(-296.8)+(-285.8)]–(-)1125 = (+)542.4 for 2 nd mark Leading to $\Delta_f H(H_2S) = (+) 271(.2)$ for 3 rd mark ALLOW –296.8 –285.8 = – 582.6 for 1 st mark if – 1125/2 OR – 562.5 is seen in 2 nd mark
(b) (i)	$(\mathcal{K}_{p}) = \frac{p(\mathrm{SO}_{3})^{2}(\mathrm{g})}{p(\mathrm{SO}_{2}(\mathrm{g}))^{2} \times p(\mathrm{O}_{2}(\mathrm{g}))} \checkmark$	2	1.2 ×2	ALLOW species without state symbols and without brackets. e.g., pSO_3^2 , $ppSO_3^2$, PSO_3^2 , $p(SO_3)^2$ (pSO_3) ² etc. DO NOT ALLOW square brackets
	atm ⁻¹ ✓			ALLOW atm as ECF if <i>K</i> _p is upside down ALLOW use of any pressure unit eg Pa ⁻¹ or kPa ⁻¹

Question	Answer	Marks	AO element	Guidance
b (ii)	FIRST CHECK THE ANSWER ON ANSWER LINE if answer = 27.2 award 5 marks Initial amounts	5	2.6 ×5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below.
	$n(SO_2) = (\frac{12}{24.0} =) \ 0.425 \ (\text{mol}) \ \text{AND}$ $n(O_2) = (\frac{12}{32.0} =) \ 0.375 \ (\text{mol}) \ \checkmark$ Equilibrium amounts in moles $n(SO_2) = (0.425 - 0.350 =) \ 0.075 \ (\text{mol}) \ \text{AND}$ $n(O_2) = (0.375 - 0.350/2 =) \ 0.200 \ (\text{mol}) \ \checkmark$			Allow 4 marks for 1.45/1.46 (depending upon rounding) Initial amounts $n(SO_2) = 2 \times n(O_2)$ $n(O_2) = 0.375$ and $n(SO_2) = 0.75(0)$ Equilibrium moles $n(SO_2) 0.75 - 0.350 = 0.4(0)$
	Total moles n _{tot} = 0.625 (mol) ✓ Partial pressures			$n(O_2) = 0.2(0)$ total moles $n_{tot} = 0.95$ partial pressures
	$pSO_2 = (\frac{0.075}{0.625} \times 2.50 =) 0.3 \text{ (atm)}$ AND $pO_2 = (\frac{0.2}{0.625} \times 2.50 =) 0.8 \text{ (atm)}$ AND			$pSO_2 = 1.05$ $pO_2 = 0.526$ pSO3 = 0.921
	$pSO_3 = (\frac{0.350}{0.625} \times 2.50 =) 1.4 \text{ (atm)} \checkmark$			Allow 4 marks for 15.1/15.0 Initial amounts $n(O_2) = 12/16 = 0.75$ Equilibrium moles $n(O_2) = 0.575$ total moles $n_{tot} = 1.00$ partial pressures $pSO_2 = 0.188$ $pO_2 = 1.438$ $pSO_3 = 0.88$
	$(K_{\rm p} = \frac{1.4^2}{0.3^2 \times 0.8} =) 27.2 (\text{atm}^{-1}) \checkmark$			IGNORE units

Question	Answer	Marks	AO element	Guidance
b (iii)	(greater <i>K</i> _p value means) equilibrium position shifted to right/RHS ✓ Lower temperature because (forward) reaction is exothermic ✓	2	3.2 ×2	ALLOW greater/higher amount of SO ₃ /product ALLOW greater K_p means larger numerator
(iv)	equilibrium position (far) to the right ✓	1	3.2	ALLOW (very) high yield of products or of SO ₃ ALLOW reaction is nearly complete / irreversible ALLOW Forward reaction is (greatly) favored ALLOW (far) more product(s) than reactant(s) or ALLOW equilibrium (greatly) favours product

Question	Answer	Marks	AO element	Guidance
(C) (i)	Summer Strategy Correct drawing of Boltzmann distribution	4	1.1 ×4	DO NOT ALLOW two curves
	Curve starts within one small square of origin AND not touching the x axis at high energy ✓ Axes labels: y: (number of) molecules/particles AND x: (kinetic) energy ✓			Confusion with effect of temperature DO NOT ALLOW 'enthalpy' for x-axis label DO NOT ALLOW 'atoms' as y-axis label
	Catalyst and activation energy Catalyst provides a lower activation energy OR E_c shown to the left of E_a on Boltzmann distribution \checkmark			ALLOW ECF for atoms (instead of molecules/particles) if y axis labelled as 'atoms'
	Particles with $E > E_a$ more or a greater proportion of molecules / particles / collisions have (energy above) activation energy (with catalyst) OR more molecules have enough energy to react OR greater area under curve above activation energy \checkmark			IGNORE (more) successful collisions IGNORE response implying 'more collisions' (confusion with effect of greater temperature)
(ii)	heterogeneous (catalyst) AND catalyst in a different phase/state (from other substances) ✓	1	1.2	ALLOW catalyst is a solid AND not a gas / everything else is a gas
	Total	23		

Question	Answer	Marks	AO element	Guidance
7 (a) (i)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Calculates CORRECT enthalpy change with correct – signs for $\Delta_{sol}H$ (CuSO ₄ (s)) for reaction 5.2 AND Δ_rH , for reaction 5.1. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Calculates a value of $\Delta_{sol}H$ (CuSO ₄ (s)) for reaction 5.2 from the: Energy change AND Amount in mol of CuSO ₄ . There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Processes experimental data to obtain the: Energy change from $mc\Delta T$ OR Amount in mol of CuSO ₄ .	6	AO3.1 ×4 AO3.2 ×2	Indicative scientific points may include: 1. Processing experimental data Energy change from $mc\Delta T$ • Energy in J OR kJ Using 50.70 g, 50.0 g = 50.70 × 4.18 × 13.5 = 2861 (J) OR 2.861 (kJ) 3SF or more (2.861001 unrounded) OR 50.0 × 4.18 × 13.5 = 2821.5 (J) OR 2.8215 (kJ) Amount in mol of CuSO ₄ • $n(CuSO_4) = \frac{7.98}{159.6} = 0.0500 \text{ (mol)}$

Ques	ion	Answer	Marks	AO element	Guidance
		0 marks – No response or no response worthy of credit.			
(a)	(ii)	Temperature change = $0.2 \times \frac{100}{20} = 1(.0)^{\circ}C \checkmark$	1	AO2.8	IGNORE direction of temperature change Working NOT required
(a) (b)	(ii)	Temperature change = $0.2 \times \frac{100}{20} = 1(.0)^{\circ}C \checkmark$ FIRST CHECK THE ANSWER IN ON ANSWER LINE If answer = (+)156 (J K ⁻¹ mol ⁻¹) award 4 marks Part 1: Calc of $\Delta_r S$ Use of 298 K (seen anywhere) 1 mark \checkmark • e.g16.1 = -55.8 - 298 × ΔS CORRECT use of Gibbs' equation 1 mark • using candidate's temperature (e.g. 298) • with -16.1 AND -55.8 • to calculate ΔS in kJ OR J \checkmark Part 2: Calc of S(Na ₂ S ₂ O ₃) 1 mark CORRECT use of standard S data in question \checkmark Seen anywhere (could be within an expression) e.g. • $372.4 - [S(Na_2S_2O_3) + (5 \times 69.9)]$ • OR $372.4 - (5 \times 69.9)$ • OR $372.4 - 349.5$ • OR 22.9 IGNORE sign, i.e. ALLOW -22.9, etc CORRECT calculation of S(Na ₂ S ₂ O ₃) using candidate's coloud to a Sin Part 1 to 2 SE	1 - -	AO2.8 AO2.4 ×4	IGNORE direction of temperature change Working NOT required Using 298 K, $\Delta S = \frac{-55.8 - (-16.1)}{298} = \frac{-39.7}{298}$ $= -0.133(kJ K^{-1}mol^{-1})$ OR -133 (J K ⁻¹ mol ⁻¹) Sign required IGNORE units Calculator: -0.133221 (kJ K ⁻¹ mol ⁻¹) -133.221 (J K ⁻¹ mol ⁻¹) ALLOW ECF from incorrect temperature. Using -133: $S(Na_2S_2O_3) = 372.4 - 349.5 - (-133)$ = 22.9 + 133 $= (+) 155 (J K^{-1} mol^{-1})$
					3 SF required ALLOW ECF from incorrect $\Delta_r S$ (Part 1)

Question		Answer	Marks	AO element	Guidance
(c)	(i)	109.5(°) AND tetrahedral ✓	1	AO1.2	ALLOW 109–110(°)
	(ii)	$ \begin{array}{c} $	1	AO3.1	IGNORE charges ALLOW cyclic structures. Three 6-ring structures possible, e.g. $0 \rightarrow 0^{2-} \qquad 0^{2-$
		Total	13		

	Questi	on	Answer	Marks	AO element	Guidance
8	(a)		 High pressure AND low temperature ✓ Right-hand side has fewer (gaseous) moles/molecules OR left-hand side has more (gaseous) moles/molecules ✓ (Forward) reaction is exothermic/gives out heat OR reverse reaction is endothermic/takes in heat ✓ 	3	1.2×1 1.1×2	Marks are independent ORA throughout ALLOW RHS ALLOW suitable alternatives for RHS e.g. product side
	(b)		(Reaction can be carried out at) lower temperatures / lower energy demand ✓ Less (fossil) fuels burnt/ less CO₂ emissions ✓	2	1.1×2	 ALLOW lower pressures as alternative to lower temperature ALLOW reduced carbon footprint as alternative to less fuels burnt ALLOW different reactions can be used with greater atom economy / less waste ALLOW can reduce use of toxic substances

Question	Answer	Marks	AO element	Guidance
(c)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 25.55 kJ mol ⁻¹ OR 25550 J mol ⁻¹ award first 4 marks	5	2.2×4	
	$\Delta S = 238 - (198 + 2 \times 131) \checkmark$ = -222 (J K ⁻¹ mol ⁻¹) OR -0.222 (kJ K ⁻¹ mol ⁻¹) $\Delta G = \Delta H - T\Delta S$ OR $\Delta G = -91 - (525 \times -0.222)$ OR $\Delta G = -91000 - (525 \times -222) \checkmark$ = 25.55 kJ mol ⁻¹ OR 25550 J mol ⁻¹		3.2×1	ALLOW ECF IGNORE units at this stage Units for ΔG required ALLOW 26 kJ mol ⁻¹ OR 26000 J mol ⁻¹ up to calculator value.
	(Reaction is) not feasible AND $\Delta G > 0 \checkmark$			

Q	uestion	Answer	Marks	AO element	Guidance
	(d)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.22 × 10 ⁴ award first 2 marks	3		ALLOW ECF for transcription errors in first sum
		$\ln K_{\rho} = -\Delta G/RT = \frac{2.48 \times 10^4}{8.314 \times 298} = 10.01 \checkmark$		3.1×2	ALLOW 10 up to calculator value of 10.00979992
		$K_{\rho} = 2.22 \times 10^4 (3SF required) \checkmark$		1.2×1	ALLOW 22200 ALLOW 2.20 \times 10 ⁴ OR 22000 (use of 10)
		Units = atm ⁻² ✓			ALLOW alternatives (k)Pa ⁻² OR N ⁻² m ⁴ OR mmHg ⁻² OR PSI ⁻² OR bar ⁻²
					Common errors for 1 mark: 22400 (use of 8.31) 4.50 x 10 ⁻⁵ (use of -10.01)
		Total	14		